NOAA's National Weather Service

Advanced Concepts of

Severe Storm Spotting

2009 - Rusty Kapela

Milwaukee/Sullivan

weather.gov/milwaukee

Spotter Aids:

- 1. Road Maps state, county, city
- 2. NOAA Weather Radio All Hazards
- 3. Binoculars & compass
- 4. Camera video, digital or regular
- 5. Watch or Clock
- 6. Cell phone or radio transceiver
- 7. Report log or audio recorder
- 8. Spotter ID card

(Spotter under approaching shelf cloud in Franklin Co. IL 4/21/02)

Problems Spotters Encounter

- Spotters can only see a limited area, and much of the time the spotter view is being blocked by rain/hail, hills, trees, and buildings.
- Spotters have a hard time getting the "big picture" of what is going on around them.
- Mobile spotters may not have access to radar data to find where to go.
- Spotters have a hard time judging distances to weather phenomena...underestimate.

Lightning Safety

Warnings are not issued for lightning.

If you're close enough to hear the thunder, your close enough to be struck.

CIPICITE &

THE PROPERTY OF THE PARTY OF TH

The Big Picture

- Surface Low Pressure Systems are associated with counter-clockwise flow, upward motion, and are typically the "weather makers"
- Surface High Pressure Systems are associated with clockwise flow, downward motion, and typically bring calm, inactive weather

Thunderstorm Ingredients

Lift

Temberature decreases as you go warm in the atmosphere. Warm air rises RELATIVELY warm, less dense air

Instability

Cold Fronts

Top down view

Side View

Warm Fronts

Top down view

SIDE VIEW

WARM

COLD

Side View

Thunderstorm Structure (Life Cycle)

Animation

Tunderstorm!

Storm Motion

Tornadic Thunderstorm

Non - Tornadic Thunderstorm - Squall Line

Downdraft - Downburst

Gust Front - is leading edge of downdraft/ downburst, you don't see it but you do feel it as winds pick up and temperatures drop and then rain/hail.

Tornadic Tstm Structure

Wall Cloud

Tornadic Supercell Thunderstorm top down view

Wall Cloud & FFD & RFD

What a difference a few minutes can make!

Tornado

Near Central City, IA, Apr 26, 2009

What Do You See?

Video

Oakfield, WI - July 18, 1996

- Reached F5 intensity
 - 30 minute duration
- Maximum path width of 400 yards
 - 13.3 mile path length
- \$40.5 million in damages
 - 12 injuries

(705-735 pm... people could see it, county fair in progress, and Oakfield police officers and fire fighters recognized early on when they had a tornado and activated their sirens)

Updraft & Downdraft Regions

Updraft & Downdraft Regions

Photo courtesy of www.extremeinstability.com

Updraft & Downdraft Regions

Rain Foot = Strong downburst winds

Hail Shaft

Hail

Aurora, NE - June 22, 2003 6 3/4 inches in diameter

Thung GISTOFF

Types

Types of Thunderstorms

Single Cell

Multicell Cluster

Multicell Line

Supercell

Weak updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Intense updraft (Always severe)

Mesocyclone - Rotating updraft

Slight threat

Moderate threat

Moderate threat

High threat

Single Cell Storms

May produce brief severe events

Multi-cell Tstm Clusters

Ordinary non-organized storms with low severe threat

 Each cell lasts about 20 minutes, but a cluster can last for hours.

Heavy rain is the main problem. However, strong winds, small hail and weak tornadoes are possible.

Multi-cell Thunderstorms

Ordinary non-organized storms with low severe threat

Multi-cell (Squall) Line

- Leading edge of Squall Line.
- What to expect
 - Strong and possibly damaging wind
- Heavy rain/hail

Multi-cell Line (Bow Echo)

Supercell Thunderstorm

- Contains a rotating updraft called a mesocyclone
- Produce large hail, high winds, and strong to violent tornadoes
- Lasts for several hours

Supercell

Main Features

Anvil

Rotating Updraft
Mesocyclone

Supercell Thunderstorm 3 Types of Supercells

Classic

High Precipitation

Supercell

Main Features

HP Supercell

HEAVY PRECIPITATION SUPERCELL (b)

Generally, there is not a good spot to view this type of storm since it is wrapped by a rain shield.

HP Supercell

HP Supercell

HP supercell (Hidden Tornado)

LP Supercell

LP Supercell

STOFFIN

Storm Strength Clues

Evaluating the Surroundings

A thick, crisp anvil is another sign of a strong updraft

An indication of a rapidly, intensifying storm!

Low Level Storm Clues

- Low, flat cloud base with little visible precipitation falling.
- On the back side of a potentially tornadic storm.

Understanding Rotation

- In order to generate a tornado, a storm needs two basic things
 - 1. Time it must persist for an appreciable time (long-lived updraft that doesn't get choked by downdraft).

2. Wind shear that translates into vertical rotation.

Updraft Weak Wind Speed Shear

Updraft Strong Wind Speed Shear

Shear

Note the tilted storm tower...vertical wind shear... downdraft rain is shifted downstream

Updraft Lean

Vertical Wind Shear

Weak

Very little separation between updraft and downdraft. Downdraft chokes updraft causing storm be short-lived.

Strong

 Tilted Updraft & downdraft are separated, so they coexist. Therefore, the storm lives longer.

Supercell Structure/RFD

Due to favorable shear, the FFD does NOT contaminate the updraft!

Secondary downdraft forms at rear of storm – called the Rear Flank Downdraft (RFD)

Wind Shear

Directional wind shear

Speed wind shear

Rotation in the horizontal becoming rotation in the vertical

Signs of Rotation

Spiral bands or striations in the clouds serve as a rotation indicator!

Mesocyclone

Rotating updraft within the Rain-Free Cloud Base

Present with all Supercells!

Mesocyclone

Mesocyclone
gets energy from
vertical wind
shear
concentrated in
the lowest
10,000 feet of
the atmosphere

Hard to see Tornado

Really Close Tornado

Hard to see Tornado

Tornado in Green & Rock Counties

May 30, 2004

Credit - Chris Gullisson

Video

The Reference of the Contract of the Contract

Crucial to tornado development

Downdraft on backside of updraft tower

Wraps around updraft to tighten circulation

(Top view)

(Looking northwest)

RFD

Wall Cloud

RFD Kicking up Dirt/Dust

RAOT PRODUCTION OF THE PRODUCT

Tornado Life Cycle

Funnel Stage

©1999 Oklahoma Climatological Survey. All rights reserved.

A rotating wall cloud is evident, with tighter rotation in the base of the cloud. As the tornadic circulation continues to develop, the funnel appears.

Mature Stage

@1999 Oklahoma Climatological Survey. All rights reserved.

Mature tornadoes form in storms which continue to get a good inflow of warm, moist air, and the circulation is near the maximum size and intensity.

Rope Stage

⊗1999 Oklahoma Climatological Survey. All rights reserved.

The inflow becomes disrupted a short time later, which starts the dissipating stage. The condensation funnel becomes tilted and shrinks into a contorted, rope-like configuration. The tornado is still dangerous even at this late stage in its life.

Supercell Tornado Stages

THE THE STATE OF T

Landspouts

Non-Supercell – usually no rotating wall cloud

Landspout Tornado

Weaker than a supercell tornado

Gustnado

Weak, short-lived, ground-based, vortex on gust front

Gustnadoes

- Aren't tornadoes since they don't extend to the cloud base
- Form along gust fronts
- Shallow vortices
- Report as "gustnadoes"

Funnel Clouds

- Report Funnel Clouds
- If funnel extends more than half way to ground, ground circulation may already exist - watch closely!

Funnel Clouds

- Some funnels can form without a Supercell
- No wall cloud usually weaker
- Less lead time (if any); WATCH unlikely

Radar

CHICATON CONTRACTOR OF THE PROPERTY OF THE PRO

Classic Supercell

Storm Splitting

PERRY

Cell Merger

Outflow Boundaries

Outflow Boundaries

Line Echo Wave Pattern

Tornado or Not?

Tornado or Not?

Shelf clouds and SLCs

This SLC generated several tornado reports!

It wasn't rotating & there was no damage!

Caution

- "Better safe than sorry" means "not passing on a false tornado or funnel cloud report.
- Human weakness adrenaline & excitement can undo months of training.
- You know enough to be dangerous if you're not sure....don't call in your report!

Tornado or Not ??

- Quiz Time -

- Quiz Time -

Quiz time

Quiz time

Quiz Time

Outflow

Down and away

Outflow

What is this?

What is this feature?

What about this feature?

Virga

What are these?

Rain Shafts

Tornadoes

Wall Clouds

Shelf Clouds

